INCREASING CLINICAL PEANUT THRESHOLDS THROUGH IMMUNOTHERAPY:
Quantitative Assessment of the Safety Benefits

Joe Baumert, Ph.D.
Co-Director, Food Allergy Research & Resource Program
Associate Professor, Department of Food Science
University of Nebraska-Lincoln

Colorado Allergy & Asthma Society Meeting
September 12, 2017
Background and Aim

- Several immunotherapy products are in development for the treatment of peanut allergy, with the goal of reducing the risk of a reaction following an accidental exposure.

- In clinical trials, after a defined period of treatment with immunotherapy, the degree of desensitization is evaluated by the change in Eliciting Dose by a double-blind placebo-controlled food challenge.*

- Successful therapy aims to increase peanut allergic individual’s threshold dose, but little is known about the risk reduction associated with a patient’s increase of threshold.

- The aim of our research is to use the Quantitative Risk Assessment (QRA) model developed by FARRP**, to assess the clinical benefit of increasing the threshold by immunotherapy.

*FDA Jan 21 2016 Allergenic Products Advisory Committee Meeting Presentations - CBER

Cross-Contact in Foods is an Everyday Threat for the Peanut-Allergic Patient

Hostess recalls snack cakes, doughnuts over peanut residue

Learning from FDA Food Allergen Recalls and Reportable Foods

<table>
<thead>
<tr>
<th>Food Class</th>
<th>Number of Recalls</th>
<th>% Class 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakery</td>
<td>153</td>
<td>62</td>
</tr>
<tr>
<td>Snack</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>Candy</td>
<td>45</td>
<td>63</td>
</tr>
<tr>
<td>Dairy</td>
<td>39</td>
<td>58</td>
</tr>
<tr>
<td>Dressing</td>
<td>38</td>
<td>59</td>
</tr>
</tbody>
</table>

Table 1: Foods Most Often Involved in Allergen Recalls

<table>
<thead>
<tr>
<th>Cause</th>
<th>Number of Recalls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong package or label</td>
<td>82</td>
</tr>
<tr>
<td>Terminology</td>
<td>59</td>
</tr>
<tr>
<td>Failure to carry forward information from an ingredient to final label</td>
<td>41</td>
</tr>
<tr>
<td>Cross-contact</td>
<td>28</td>
</tr>
<tr>
<td>Ingredient mislabeled from supplier</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 3: Causes of Food Allergen Recalls

FARRP Tracking of FDA Food Allergen – Peanut Recalls
Calendar Years 2006-2017
Peanut Allergic Patients Present with Different Levels of Sensitivity

0.4 mg peanut (0.1 mg peanut protein) is the eliciting dose of the most sensitive peanut-allergic patient reported in the published clinical literature
Consumers Eat Varying Quantities of Food Per Eating Occasion
Quantitative Risk Assessment (QRA)

Data Source
- NHANES Survey
- Product Analysis
- Scientific Literature

Input Variable Distributions (Bayesian Inference)
- Consumption Probability Distribution
- Amount Consumed Distribution (g)
- Presence of Allergen Distribution
- Concentration of Allergen Distribution (mg/kg)
- Threshold (NOAEL/LOAEL) Dose-Response Curve for Allergen (mg)
- Prevalence of Allergy Distribution

2nd Order Monte Carlo Simulations
- Allergen Intake Distribution (mg)
- Thresholds Distribution (mg)

Risk of Allergic Reaction Distribution
Quantitative Assessment of the Safety Benefits Associated with Increasing Clinical Peanut Thresholds Through Immunotherapy

Joseph L. Baumert, PhD, Steve L. Taylor, PhD, Stef J. Koppelman, PhD
Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska, Lincoln, Neb

http://dx.doi.org/10.1016/j.jaip.2017.05.006
What is the Risk Reduction Associated with an Increase of Eliciting Dose?

SERVING SIZE

- Grams of food

INPUT 1: Consumption data

CONTAMINATION LEVEL

- Level of peanut protein residue in food (mg/kg)

INPUT 2: Contamination levels

PATIENT THRESHOLD

- Milligrams peanut protein

INPUT 3: Threshold data
The QRA Model is Applied to Predict the Frequency of Reactions in Peanut-allergic Patients

INPUT 1: Consumption data

INPUT 2: Contamination levels

INPUT 3: Threshold data

5 million iterations of the risk assessment conducted for each individual threshold (1, 3, 10, 30, 100, 300, 1000 mg peanut protein)

DATA SOURCE

- NHANES Survey

INPUT VARIABLE DISTRIBUTIONS (BAYESIAN INFERENCE)

- Consumption Probability Distribution
- Amount Consumed Distribution (g)

2ND ORDER MONTE CARLO SIMULATIONS

INPUT VARIABLE DISTRIBUTIONS (BAYESIAN INFERENCE)

- Presence of Allergen Distribution
- Concentration of Allergen Distribution (mg/kg)

DATA SOURCE

- Product Analysis

OUTPUT VARIABLE DISTRIBUTIONS

- Exposure Dose Distribution (mg peanut protein)
Input 1: Consumption Data of Key Product Categories

Four commonly consumed packaged product categories at risk for containing traces of peanut protein*

<table>
<thead>
<tr>
<th>Food Category</th>
<th># Individuals Who Reported Consuming the Food (% of total population surveyed)</th>
<th>Average</th>
<th>90th Percentile</th>
<th>95th Percentile</th>
<th>99th Percentile</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cookies</td>
<td>11,297 (34.2%)</td>
<td>32</td>
<td>78</td>
<td>105</td>
<td>178</td>
<td>634</td>
</tr>
<tr>
<td>Ice Cream</td>
<td>7877 (23.9%)</td>
<td>125</td>
<td>240</td>
<td>291</td>
<td>441</td>
<td>1227</td>
</tr>
<tr>
<td>Doughnuts/Snack Cakes</td>
<td>2128 (6.44%)</td>
<td>73</td>
<td>128</td>
<td>155</td>
<td>225</td>
<td>768</td>
</tr>
<tr>
<td>Snack Chip Mixes</td>
<td>7802 (23.6%)</td>
<td>37</td>
<td>64</td>
<td>96</td>
<td>172</td>
<td>380</td>
</tr>
</tbody>
</table>

** NHANES: 2003-2010 US National Health and Nutrition Examination Surveys. 30,000+ individuals, various product categories
Input 1: Consumption Data (Distribution Analysis)
Input 2: Contamination Levels
Concentration (ppm or mg/kg)

<table>
<thead>
<tr>
<th></th>
<th>Concentration</th>
<th>Consumed Amount</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peanut Residue</td>
<td>ppm (or mg/kg)</td>
<td>X kg (or gram/1000)</td>
<td>= mg Peanut Residue</td>
</tr>
<tr>
<td></td>
<td>↓ X 0.25*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peanut Protein</td>
<td>ppm (or mg/kg)</td>
<td>X kg (or gram/1000)</td>
<td>= mg Peanut Protein</td>
</tr>
</tbody>
</table>

*Peanut kernel contains 25% peanut protein on avera

1000 ppm peanut (mg/kg) ✗ 100 grams of cookies = 100 mg DOSE of peanut (1/10th of a peanut kernel)
Peanut residue can occasionally be present in pre-packaged food products bearing precautionary allergen labels* (i.e. May Contain Peanut and other terms)

Concentrations of peanut residue in pre-packaged food products have varied
- Many products do not have detectable peanut residue
- Of those that were positive, the concentrations ranged from 1-1000 ppm (mg/kg) peanut protein generally
- Median of 10-30 ppm peanut protein

Conservative approach for risk assessment:
- Use range from 1 to 1000 ppm peanut protein (assume all products contain detectable peanut residue)
- Random selection with equal chance for low and high end of the range

Robertson, 2013 Food Addit Contam Part A;30(9):1467-72
Input 3: Range of Patient Baseline Threshold (Based on PRACTALL Guidelines)

Input for QRA model reflects patient sensitivity at baseline.

QRA Approach

- Calculate risk of predicted allergic reaction during a single eating occasion (%)

Iteration #1:
- Amount: 40 g
- Concentration: 3 ppm
- Dose: 0.12 mg
- Threshold: 10 mg

Iteration #2:
- Amount: 110 g
- Concentration: 30 ppm
- Dose: 3.3 mg
- Threshold: 10 mg

Iteration #3:
- Amount: 260 g
- Concentration: 300 ppm
- Dose: 78 mg
- Threshold: 10 mg

Iteration #4:
- Amount: 50 g
- Concentration: 10 ppm
- Dose: 0.5 mg
- Threshold: 10 mg

Iteration #5,000,000:
- Amount: 6 g
- Concentration: 1000 ppm
- Dose: 6 mg
- Threshold: 10 mg
Predicted Probability of a Reaction Associated with the Four Selected Product Categories Containing Peanut Protein Residue

- **Cookies**
 - 1mg: 3mg
 - 10mg: 10mg
 - 30mg: 30mg
 - 100mg: 100mg
 - 300mg: 300mg
 - 1000mg: 1000mg

- **Ice Cream**
 - 1mg: 1mg
 - 3mg: 3mg
 - 10mg: 10mg
 - 30mg: 30mg
 - 100mg: 100mg
 - 300mg: 300mg
 - 1000mg: 1000mg

- **Doughnut/snack cake**
 - 1mg: 1mg
 - 3mg: 3mg
 - 10mg: 10mg
 - 30mg: 30mg
 - 100mg: 100mg
 - 300mg: 300mg
 - 1000mg: 1000mg

- **Snack chip mix**
 - 1mg: 1mg
 - 3mg: 3mg
 - 10mg: 10mg
 - 30mg: 30mg
 - 100mg: 100mg
 - 300mg: 300mg
 - 1000mg: 1000mg
Predicted Probability of an Allergic Reaction Occurring Due to Peanut Protein Contamination In Ice Cream

PEANUT-ALLERGIC INDIVIDUAL’S THRESHOLD VALUE

<table>
<thead>
<tr>
<th>Threshold</th>
<th>1 mg</th>
<th>3 mg</th>
<th>10 mg</th>
<th>30 mg</th>
<th>100 mg</th>
<th>300 mg</th>
<th>1000 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
<td>60.7%</td>
<td>46.9%</td>
<td>32.3%</td>
<td>19.0%</td>
<td>5.8%</td>
<td>0.295%</td>
<td>0.0040%</td>
</tr>
</tbody>
</table>

99.1% Risk Reduction*

*Risk reduction from 32.3% to 0.295%

32.3/0.295 = 109-fold, or \((32.3 - 0.295) / 32.3 \cdot 100\% = 99.1\%\)
Relative Risk Reduction: Ice Cream

~99% risk reduction is achieved when:
- reaching an Eliciting Dose of 300 mg from ≤ 10 mg
- reaching an Eliciting Dose of 1000 mg from ≤ 300 mg
Relative Risk Reduction Associated with Reaching Post-Therapy Threshold

% Reduction in Risk of an Allergic Reaction due to Cross-Contamination in Packaged Goods

<table>
<thead>
<tr>
<th>Baseline Threshold</th>
<th>Post-therapy Threshold: 300 mg</th>
<th>Post-therapy Threshold: 1000 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cookies</td>
<td>Ice Cream</td>
</tr>
<tr>
<td>1</td>
<td>99.9%</td>
<td>99.5%</td>
</tr>
<tr>
<td>3</td>
<td>99.9%</td>
<td>99.4%</td>
</tr>
<tr>
<td>10</td>
<td>99.9%</td>
<td>99.1%</td>
</tr>
<tr>
<td>30</td>
<td>99.8%</td>
<td>98.5%</td>
</tr>
<tr>
<td>100</td>
<td>97.0%</td>
<td>94.9%</td>
</tr>
<tr>
<td>300</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

FAARP: Food Allergy Research & Resource Program, University of Nebraska.
Conclusions

Quantitative Risk Analysis (QRA) provides a quantitative and transparent approach to assess the benefit of increasing a peanut-allergic individual’s threshold during immunotherapy.

Significant risk reductions (99%) are reached
- When ED is 300 mg if initial dose is 10 mg or lower
- When ED is 1000 mg if initial dose is 300 mg or lower
Joe Baumert, Ph.D.
Co-Director, Food Allergy Research & Resource Program
Associate Professor, Department of Food Science
University of Nebraska-Lincoln
jbaumert2@unl.edu